Fibonacci, Lucas Numbers with Daul Bicomplex Numbers
نویسندگان
چکیده
منابع مشابه
Trigonometric Expressions for Fibonacci and Lucas Numbers
The amount of literature bears witness to the ubiquity of the Fibonacci numbers and the Lucas numbers. Not only these numbers are popular in expository literature because of their beautiful properties, but also the fact that they ‘occur in nature’ adds to their fascination. Our purpose is to use a certain polynomial identity to express these numbers in terms of trigonometric functions. It is in...
متن کاملThe Imperfect Fibonacci and Lucas Numbers
A perfect number is any positive integer that is equal to the sum of its proper divisors. Several years ago, F. Luca showed that the Fibonacci and Lucas numbers contain no perfect numbers. In this paper, we alter the argument given by Luca for the nonexistence of both odd perfect Fibonacci and Lucas numbers, by making use of an 1888 result of C. Servais. We also provide a brief historical accou...
متن کاملThe sum and product of Fibonacci numbers and Lucas numbers, Pell numbers and Pell-Lucas numbers representation by matrix method
Denote by {Fn} and {Ln} the Fibonacci numbers and Lucas numbers, respectively. Let Fn = Fn × Ln and Ln = Fn + Ln. Denote by {Pn} and {Qn} the Pell numbers and Pell-Lucas numbers, respectively. Let Pn = Pn × Qn and Qn = Pn + Qn. In this paper, we give some determinants and permanent representations of Pn, Qn, Fn and Ln. Also, complex factorization formulas for those numbers are presented. Key–Wo...
متن کاملSome Trigonometric Identities Involving Fibonacci and Lucas Numbers
In this paper, using the number of spanning trees in some classes of graphs, we prove the identities: Fn = 2n−1 n √
متن کاملOn Certain Arithmetic Properties of Fibonacci and Lucas Numbers
mirroring a well-known feature of Fibonacci numbers (see Theorem 2.5). It was pointed out in [1] that (0.2) could itself be used to disprove the corresponding assertion for the 1cm; precisely, if lcm(a, b) = £, then lcm(Ma, Mb) Mt only in the trivial cases a\b or b\a. The argument rested on a uniqueness theorem for the expression of rational numbers as a ratio of two members of the {Mn} sequenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Informatics and Mathematical Sciences
سال: 2018
ISSN: 0974-875X,0975-5748
DOI: 10.26713/jims.v10i1-2.575